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Z L Mi škovíc†‡, R A English, S G Davison‡ and F O Goodman‡
Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
N2L 3G1

Received 22 August 1997

Abstract. Electron transmission properties of a configuration consisting of two infinite
monatomic chains, which are coupled to each other by either a direct bond or through a
finite atomic bridge, are studied via the tight-binding model. A method, based on the multi-
channel Lippmann–Schwinger equation, is used to obtain analytical expressions for the 4× 4
scattering matrix, from which transmission probabilities are calculated for several special chain
configurations. In particular, we study cases where the bridge is subjected to a constant potential
and an electric field, which is generated by a potential difference between the two infinite chains.
The results of the theory are very useful for qualitative evaluations of the transmission properties
of simple atomic circuits and molecular switches.

1. Introduction

The need for improving the operational speed and the integration level of future
microelectronic devices places the focus of theoretical research on electron transmission
through linear periodic systems at the molecular or atomic level. The study of transmission
through periodic molecular chains, containing impurities or defects, provides important
insight into the switching properties of conducting polymers, with potential use in molecular
electronics. Various configurations of molecular wires, connected to the external world
via leads, have been studied [1, 2]. Moreover, techniques, such as manipulation of
individual atoms on solid surfaces by a scanning tunnelling microscope [3], or phenomena of
spontaneous alignment of atoms on solid surfaces, have opened up prospects of fabrication of
periodic atomic chains on insulating substrates. Thus, a study of the transmission properties
of various configurations of atomic wires becomes relevant for the design of basic devices
such as molecular and atomic switches and memory cells, as well as more complex logic
circuits at the atomic level [4].

Electron transmission through molecular and atomic wires is conveniently studied by
the tight-binding (TB) model [5, 6, 7, 8] of periodic chains. Describing a polymeric
system by a TB hamiltonian with a single orbital per site is certainly an oversimplified
model for a molecular-electronic switch. A more adequate use of such a TB model is
expected for describing transmission through atomic wires, with the neglect of the coupling
to the substrate [4]. However, in both cases TB calculations permit analytical results for
transmission coefficients, providing qualitative understanding of modes of switch control
in terms of various atomic parameters, which may be related to realistic systems through
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a renormalization approach [9], or via the use of an effective TB hamiltonian [2]. In
particular, the TB model is easily handled when one is interested in transmission through
more complex configurations of molecule/atom wires involving several leads, such as a
T-junction [10, 11].

From the methodological point of view, the transfer-matrix (TM) technique has been
used to obtain transmission coefficients for compact, molecular-type, impurities in a host
periodic chain [5, 6]. On the other hand, multiple impurities [7] and chains with long-range
interactions [8] are handled more easily by the Koster–Slater method [12], based on the
Lippmann–Schwinger (LS) equation [13]. Considering chain configurations with multiple
leads and extended coupling regions, a multi-channel LS equation approach readily yields
the elements of the corresponding scattering matrix. The advantage of the LS method lies
in using the asymptotic form of the wave function for the chain configuration to obtain the
transmission coefficients, whereas the TM technique would require multiple matrix products
of high degree. Moreover, the multi-channel LS approach can be easily extended to TB
systems with several orbitals per unit cell.

In section 2, the basic theory for obtaining the 4× 4 scattering matrix (SM) for an H-
shaped configuration of atomic wires is presented by solving a multi-channel LS equation.
Section 3 is devoted to applications of the theory to various chain configurations derived
from the basic H shape. Concluding remarks are given in section 4. Units in which ¯h = 1
are used throughout.

2. Basic theory

We consider the system, shown in figure 1, which consists of two infinite monatomic chains,
a andc, interacting with each other by either a direct bondη or through a bridgeb, which
connects sites 0 in each chain. Being in constant potential, the chainsa and c can both
transmit the current. However, their site (bond) energies are, in general, different,αa 6= αc
(βa 6= βc), corresponding to different types of atoms or orbitals, or indicating a possible
potential differenceφ = αc − αa between the two chains. As a result of the interaction,
the energies at sites 0 in both chains are perturbed by changingαp to α′p (p = a, c).
The couplings with the neighbouring sites in both chains,−1 and 1, are perturbed in an
asymmetric manner, by changingβp to γp andγ ′p (p = a, c), respectively. This asymmetry
may describe a specific nature of the bonds involved in coupling the chains, but will also
be useful in tailoring different chain configurations in subsequent sections. The bridgeb

consists of a finite,N -atom, chain with bond energyβb, while site energiesαnb are labelled
by the site positionn = 1, 2, . . . , N , to indicate the possibility of having an electric field
along the bridge generated by the potential differenceφ between the chainsa andc. Finally,
the bonds between the bridge end atoms 1 andN with the sites 0 in chainsa andc areµa
andµc, respectively, as shown in figure 1.

The transmission properties of such an H-chain configuration are described, in general,
by a 4×4 SM, whose elements will be derived by means of the LS equation. The scattering
wave function is represented in asymptotic regions of chainsa and c by Bloch waves,
j
−1/2
p exp(inθp), carrying unit flux, wherejp = −2βp sinθp is the current through the chain
p, while the momentumθp is related to the energyE, inside the band of the chainp (= a, c),
via E = αp + 2βp cosθp. Using matrix notation, the wave functionu is represented by

u =
 uan
ubn
ucn

 (1)
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Figure 1. Diagram of the basic H chain configuration, for which the scattering matrix elements
are evaluated. It is convenient to use thereducedquantities: energyXp = (E − αp)/2βp (for
p = a, b, c), site-energy perturbationZp = (α′p − αp)/2βp and intra-chain bond perturbations
Yp = γp/βp , Y ′p = γ ′p/βp (for p = a, c), as well as inter-chain bondsVa = µa/

√
βaβb,

Vc = µc/
√
βcβb andW = η/√βaβc.

where association of the subscriptn with the superscriptp in the channel functionupn
unambiguously restrictsn to be a site in the chainp = a, b, c. Thus, if the unperturbed
wave function represents a Bloch wave, which carries unit current incoming from the left
in the chaina,

u0 =
 einθa /

√
ja

0
0

 (2)

then the scattering wave function will have the form

un→−∞ =
 (

einθa + Saall e−inθa
)
/
√
ja

0
Sacll e−inθc/

√
jc

 (3)

in far left regions, and

un→∞ =
 Saalr einθa /

√
ja

0
Saclr einθc/

√
jc

 (4)

in far right regions. Here, the elements of the SM have the following meanings:Saall is the
reflection coefficient for a Bloch wave incoming from the left in chaina and is reflected
to the left in chaina, Saalr is the transmission coefficient for a wave going from the left in
chaina to the right in chaina, Sacll is the transmission coefficient for a wave coming from
the left in chaina to the left in chainc andSaclr is the transmission coefficient for a wave
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going from the left in chaina to the right in chainc. All other elements of the SM are, of
course, obtained by symmetry. In what follows, we are going to solve the LS equation for
the scattering wave functionu and use the asymptotic forms of the channel functionsuan
anducn to determine the relevant elements of the SM, in conjunction with (3) and (4).

The unperturbed Greenian describes two decoupled infinite chains,a and c, and an
isolatedN -atom chainb (a free bridge, possibly placed in an electric field), and is given by
the block matrix

G0 =
 ga(n, k) 0 0

0 gb(n, k) 0
0 0 gc(n, k)

 (5)

where association ofn, k with p in gp(n, k) unambiguously restricts the sitesn and k to
lie in the chainp (−∞ < n, k < ∞ for p = a, c and 16 n, k 6 N for p = b). For
the reducedenergyXp = cosθp = (E − αp)/2βp inside the band (−1 6 Xp 6 1) of the
chainp = a, c, the unperturbed Greenian, with the outgoing-wave asymptotic form, can be
expressed as [14]

gp(n, k) = ei|n−k|θp

ijp
for p = a, c (6)

wherejp = −2βp
√

1−X2
p. The form of the free-bridge Greeniangb(n, k) will be specified

in the following section, which is devoted to applications of the present theory.
Perturbations, describing the interacting system of the figure 1, can be arranged in the

3× 3 block matrix

V =
 V aakm V abkm V ackm
V bakm V bbkm V bckm
V cakm V cbkm V cckm

 =
 V aakm µaδk0δm1 ηδk0δm0

µaδk1δm0 0 µbδkNδm0

ηδk0δm0 µbδk0δmN V cckm

 (7)

where

V
pp

km = (α′p − αp)δk0δm0+ (γp − βp)(δk0δm,−1+ δk,−1δm0)+ (γ ′p − βp)(δk0δm1+ δk1δm0),(8)

for p = a, c. Note that the explicit form of the perturbation matrix, (7) with (8), given
in terms of Kronecker deltas, is based on the convention thatV

pq

km describes a perturbation
involving sitek in chainp and sitem in chainq, wherep, q = a, b, c.

Finally, the multi-channel LS equation,

u = u0+G0Vu (9)

with the unperturbed solution (2), can be written in the following component form

uan =
einθa
√
ja
+ (α′a − αa)ga(n, 0)ua0 + (γa − βa)

[
ga(n, 0)ua−1+ ga(n,−1)ua0

]
+(γ ′a − βa)

[
ga(n, 0)ua1 + ga(n, 1)ua0

]+ µaga(n, 0)ub1 + ηga(n, 0)uc0 (10)

ubn = µagb(n, 1)ua0 + µcgb(n,N)uc0 (11)

ucn = (α′c − αc)gc(n, 0)uc0+ (γc − βc)
[
gc(n, 0)uc−1+ gc(n,−1)uc0

]
+(γ ′c − βc)

[
gc(n, 0)uc1+ gc(n, 1)uc0

]+ µcgc(n, 0)ubN + ηgc(n, 0)ua0. (12)

After some algebra, it is possible to express the solution for the channel functions in chains
a andc in compact form, in terms ofua0 anduc0, as follows

upn = vpn +
(
u
p

0 − vp0
) gp(n, 0)

gp(0, 0)
+ {(γp − βp) [gp(n,−1)− gp(n, 0)eiθp

]
+ (γ ′p − βp)

[
gp(n, 1)− gp(n, 0)eiθp

]}
u
p

0 (13)
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with p = a, c, where

van =
einθa
√
ja
+ ga(n, 0)

[
η + µaµcgb(1, N)

]
uc0 (14)

vcn = gc(n, 0)
[
η + µcµagb(N, 1)

]
ua0. (15)

Explicit forms ofua0 anduc0 are readily obtained by solving the coupled equations

u
p

0 =
1

Dp

{[
2Xp − (Yp + Y ′p)eiθp

]
v
p

0 + (Yp − 1)vp−1+ (Y ′p − 1)vp1
}

p = a, c (16)

in conjunction with (14) and (15), where

Da = 2(Xa − Za)−
[
Y 2
a + (Y ′a)2

]
eiθa − V 2

a g̃b(1, 1) (17)

Dc = 2(Xc − Zc)−
[
Y 2
c + (Y ′c)2

]
eiθc − V 2

c g̃b(N,N). (18)

Here, we have used reduced quantitiesYp = γp/βp, Y ′p = γ ′p/βp, Zp = (α′p − αp)/2βp, and
Vp = µp/

√
βpβb for p = a, c. Note that the Greenian of the bridgeb is now expressed in

a reduced form̃gb(n,m) ≡ βbgb(n,m).
Taking n→±∞ in (13) and comparing with (3) and (4) yields the SM elements

Saall = −1− 2i
√

1−X2
aY

2
a

Dc

1
(19)

Saalr = −2i
√

1−X2
aYaY

′
a

Dc

1
(20)

Sacll = −2i
[
(1−X2

a)(1−X2
c )
]1/4

YaYc
Cca

1
(21)

Saclr being obtained from (21) simply by replacingYc by Y ′c. Here,1 = DaDc − CacCca,
with

Cac = W + VaVcg̃b(1, N)
Cca = W + VcVag̃b(N, 1) (22)

where we defineW = η/√βaβc. It should be noted that, in the definitions (17) and (18) of
Da andDc, one has to specify analytic continuation of the factors eiθp outside the band of
chainp = a, c, namely

eiθp =
 Xp + i

√
1−X2

p for |Xp| 6 1

Xp − sign(Xp)
√
X2
p − 1 for |Xp| > 1.

(23)

Equations (19) to (21), together with the definitions (17), (18), (22) and (23), constitute
the main results of the present theory. Transmission probabilities are obtained as squared
moduli of the corresponding SM elements (19) to (21), with the final remarks thatSaall and
Saalr are nonzero for|Xa| 6 1, while Sacll andSaclr are nonzero for|Xa| 6 1 and |Xc| 6 1,
that is, for energiesE inside the band overlap region of the chainsa andc.

3. Applications

In this section, we study the transmission properties of specific chain configurations, which
can be tailored from the basic H configuration of figure 1 by using convenient choices for the
various coupling parameters. Note that the reduced quantities are listed, for convenience,
in the caption of figure 1.
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3.1. Directly coupled infinite chains

We consider here the transmission properties of two identical chains, which are coupled by
the bondW , connecting the chains’ sites 0. The bridge is removed by takingVa = Vc = 0,
and we takeXa = Xc ≡ X, Ya = Y ′a = Yc = Y ′c = 0.5 andZa = Zc = 0. We have plotted
in figure 2 theX andW dependences of the chain-a reflection probability (a), chain-a
transmission probability (b) and chain-c transmission probabilities (c). Of course, the plots
add up to unity over the whole(X,W) region.

3.2. Loop

Another configuration, of some interest for a memory cell [4], is an(N +1)-atom loop [10]
of a chain, which can be generated by taking the bridgeb in constant potential and assuming
that it is made of same material as chaina (αnb = αa for n = 1, . . . , N andβb = βa). The
loop is formed by takingYc = Y ′c = 0, Zc = 0, Vc = 1 andW = Ya = Y ′a = Va ≡ Y .
Transmission probability through the loop is obtained from|Saalr |2 and is nonzero for energies
Xa ≡ X inside the band of chaina (|X| 6 1). Then, the elements of the bridge Greenian,
required inSaalr , can expressed in terms of Chebyshev polynomialsUn(X), as follows

g̃b(1, 1) = g̃b(N,N) = UN−1(X)/UN(X)

g̃b(1, N) = g̃b(N, 1) = 1/UN(X). (24)

The X and Y dependence of the loop transmission probability is plotted in figure 3 for
N + 1 = 5 andZa = 0. An interesting feature is the exact vanishing of the transmission
probability at the band centre, due to existence of a local antiresonance [10].

3.3. T-junction in constant potential

A T-junction with three semi-infinite leads [11] is obtained simply by takingVa = Vc =
Yc = 0 andY ′c = 1, Zc = 0. We shall assume that the chaina is not perturbed (Xa ≡ X,
Ya = Y ′a = 1 andZa = 0) and that the remaining half of the chainc hasαc = αa and
βc = Rβa, so that,Xc = X/R. The X andW dependence of transmission probability
through the chaina is plotted in figure 4(a) forR = 0.5.

The case of one lead being a finite [10],N -atom chain, is generated by taking
W = Vc = 0. We have, in fact, the bridgeb adsorbed on the site 0 of the chaina (which
we take as unperturbed,Xa ≡ X, Ya = Y ′a = 1, Za = 0) via the bondVa ≡ V . In the
transmission probability|Saalr |2, we need the bridge Greenian elementg̃b(1, 1), analytically
continued outside the bridge band,

g̃b(1, 1) =


UN−1(Xb)

UN(Xb)
for |Xb| 6 1

sign(Xb)
sinh[Narccosh(|Xb|)]

sinh[(N + 1) arccosh(|Xb|)] for |Xb| > 1.
(25)

Taking αnb = αa and βb = Rβa, that is,Xb = X/R, we plot theX and V dependence
of transmission probability in figure 4(b) forN = 4 andR = 0.5. The effect of the
adsorbedN -atom branch on the host chain is seen to introduceN (=4 for R < 1) dips in
the transmission probability, as the adsorption bondV increases.

3.4. T-junction in electric field

A T-junction with one, semi-infinite, lead in an electric field is obtained by taking
W = Vc = 0, and placing the semi-infinite bridge in an electric field of gradient0, so
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Figure 2. Dependence of the transmission through two identical chains on energyX and inter-
chain couplingW : chain-a reflection probability (a), chain-a transmission probability (b) and
chain-c transmission probabilities (c).

thatαnb = α1
b + (n− 1)0 for 16 n <∞. The bridge Greenian, needed inSaalr , is given by

[15]

g̃b(1, 1) = sign(Fb)
J−ξ

(|Fb|−1
)

J−ξ−1
(|Fb|−1

) (26)
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where J is the Bessel function of the first kind,Fb = 0/2βb, and ξ = Xb/Fb with
Xb = (E − α1

b)/2βb. Taking again the chaina to be unperturbed (Xa ≡ X, Ya = Y ′a = 1
and Za = 0), we defineF = 0/2βa = RFb, whereR = βb/βa. Moreover, assuming
α1
b = αa, we haveXb = X/R. The dependence of the transmission probability through the

chaina onX andV ≡ Va is plotted in figure 5(a) forF = 0.15 andR = 0.5. Again, dips
in the transmission probability of the host chain reflect the local (discrete) density of states
at the site 1 of the lead in the field [15]. Figure 5(b) presents just the cross-sections of the
plot in figure 5(a), forV = 0.5 andV = 1.5, which reveal more detailed features of the
transmission probability.

3.5. Sandwich in constant potential and electric field

A sandwich structure [16, 17] consists of a finite,N -atom chain between two semi-infinite
leads of same material, and is obtained by takingW = Y ′a = Yc = 0, as well asYa = Y ′c = 1,
Za = Zc = 0. When the bridge is placed in a constant potential and coupled to the leads by
Va = Vc ≡ V , its Greenian elements̃gb(1, 1) = g̃b(N,N) are both given by the definition
(25). Similarly, the cross elements̃gb(1, N) = g̃b(N, 1), required inSaclr , are given by

g̃b(1, N) =


1

UN(Xb)
for |Xb| 6 1

[
sign(Xb)

]N √
X2
b − 1

sinh[(N + 1) arccosh(|Xb|)] for |Xb| > 1.

(27)

Assumingαa = αb = αc andβa = βc = βb/R, we haveXa = Xc ≡ X andXb = X/R.
TheX andV dependence of the transmission probability through the sandwich in a constant
potential,|Saclr |2, is plotted in figure 6(a) forN = 4 andR = 0.5. Thus, we have anN -atom
impurity, immersed in a host chain, which shows up in the transmission probability as series
of resonance peaks, for sufficiently weak adsorption bondV .

A sandwich in an electric field is represented by two semi-infinite leads (obtained by
W = Y ′a = Yc = 0, as well asYa = Y ′c = 1, Za = Zc = 0), placed in constant, but different,
potentials, with potential differenceφ. Assuming thatαc = αNb = αa + φ = α1

b + φ,
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one lead beingN = 4-atom branch adsorbed on the chaina (b).

we have the field gradient across theN -atom bridge0 = φ/(N − 1). Assuming further
that βa = βc, we haveXc = Xa − 2U , whereU = φ/4βa is the reduced potential
difference between the leads, so that the transmission probability|Saclr |2 is non-zero for
non-vanishing band-overlap between the leads, defined by 06 U < 1. Defining the field
strength byF = 0/2βa = 2U/(N − 1), we haveFb = F/R, whereR = βb/βa. Referring
to Xb = (E − α1

b)/2βb = Xa/R as the reduced energy at the site 1 of the bridge and
X′b = (E − αNb )/2βb = Xb − (N − 1)Fb as the reduced energy at the siteN of the bridge,
we defineξ = Xb/Fb = Xa/F and ξ ′ = X′b/Fb = ξ − N + 1. The relevant Greenian
elements may now be written as [17]

g̃b(1, 1) = − Y−ξ J−ξ ′+1− J−ξY−ξ ′+1

Y−ξ−1J−ξ ′+1− J−ξ−1Y−ξ ′+1
(28)

g̃b(N,N) = Yξ ′Jξ+1− Jξ ′Yξ+1

Yξ ′−1Jξ+1− Jξ ′−1Yξ+1
(29)



10758 Z L Mišković et al
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transmission is shown forV = 0.5 andV = 1.5 (b).

g̃b(1, N) = g̃b(N, 1) =
2F

πR

Y−ξ−1J−ξ ′+1− J−ξ−1Y−ξ ′+1
(30)

where the Bessel functions of the first (second) kindJ (Y ) depend on 1/Fb. Transmission
probability through the sandwich in the electric field is plotted in figure 6(b) for U=0.5 (the
overlapping region of the chain-a band is then 06 Xa 6 1), andN = 10 andR = 0.5, as
a function of the coupling to the leads,Va = Vb ≡ V . The transmission probability shows
a number of resonant peaks, reflecting a portion of a quasi-Wannier–Stark ladder [15, 17],
formed in the bridge.
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Figure 6. Dependence of the transmission through sandwich on energyX and bondV for band-
width ratioR = 0.5: N = 4-atom sandwich in constant potential (a),N = 10-atom sandwich
in the field, generated by theU = 0.5 potential difference between the leads (b).

4. Concluding remarks

The theory of section 2 provides simple analytical expressions for the SM elements of
the basic H structure of figure 1 in terms of the bridge Greenian elements and a number
of perturbed site and bond energies. These results may prove useful for quick qualitative
estimates of transmission properties of a number of chain configurations, as described in
section 3. Special attention has been given to the cases with a bridge in an electric field,
for which the relevant Greenian elements can expressed in an analytical manner in terms
of Bessel functions. In this way we provide an analytical tool for studying basic elements
of atomic-wire circuits. For example, takingW = 0 in the H configuration of figure 1,
provides a model for a prototype atomic relay [4] by placing the feed linec in a potential,
so that the field across the bridgeb may be used to control the transmission through the
chaina by displacing the atom at the site 0, thus weakening the bonds to its neighbours at
sites−1 and 1. Finally, let us mention that one can analyse the switching times, related to
the various transmission channels in the H structure by a straightforward extension of our
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study of switching time in a TB chain with a single impurity [18].
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[15] English R A, Davison S G, Miškovíc Z L, Goodman F O, Amos A T and Burrows B L 1996Prog. Surf.

Sci. 53 323
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