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Abstract. Electron transmission properties of a configuration consisting of two infinite
monatomic chains, which are coupled to each other by either a direct bond or through a
finite atomic bridge, are studied via the tight-binding model. A method, based on the multi-
channel Lippmann—Schwinger equation, is used to obtain analytical expressions fox the 4
scattering matrix, from which transmission probabilities are calculated for several special chain
configurations. In particular, we study cases where the bridge is subjected to a constant potential
and an electric field, which is generated by a potential difference between the two infinite chains.
The results of the theory are very useful for qualitative evaluations of the transmission properties
of simple atomic circuits and molecular switches.

1. Introduction

The need for improving the operational speed and the integration level of future
microelectronic devices places the focus of theoretical research on electron transmission
through linear periodic systems at the molecular or atomic level. The study of transmission
through periodic molecular chains, containing impurities or defects, provides important
insight into the switching properties of conducting polymers, with potential use in molecular
electronics. Various configurations of molecular wires, connected to the external world
via leads, have been studied [1, 2]. Moreover, techniques, such as manipulation of
individual atoms on solid surfaces by a scanning tunnelling microscope [3], or phenomena of
spontaneous alignment of atoms on solid surfaces, have opened up prospects of fabrication of
periodic atomic chains on insulating substrates. Thus, a study of the transmission properties
of various configurations of atomic wires becomes relevant for the design of basic devices
such as molecular and atomic switches and memory cells, as well as more complex logic
circuits at the atomic level [4].

Electron transmission through molecular and atomic wires is conveniently studied by
the tight-binding (TB) model [5, 6, 7, 8] of periodic chains. Describing a polymeric
system by a TB hamiltonian with a single orbital per site is certainly an oversimplified
model for a molecular-electronic switch. A more adequate use of such a TB model is
expected for describing transmission through atomic wires, with the neglect of the coupling
to the substrate [4]. However, in both cases TB calculations permit analytical results for
transmission coefficients, providing qualitative understanding of modes of switch control
in terms of various atomic parameters, which may be related to realistic systems through
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a renormalization approach [9], or via the use of an effective TB hamiltonian [2]. In
particular, the TB model is easily handled when one is interested in transmission through
more complex configurations of molecule/atom wires involving several leads, such as a
T-junction [10, 11].

From the methodological point of view, the transfer-matrix (TM) technique has been
used to obtain transmission coefficients for compact, molecular-type, impurities in a host
periodic chain [5, 6]. On the other hand, multiple impurities [7] and chains with long-range
interactions [8] are handled more easily by the Koster—Slater method [12], based on the
Lippmann—Schwinger (LS) equation [13]. Considering chain configurations with multiple
leads and extended coupling regions, a multi-channel LS equation approach readily yields
the elements of the corresponding scattering matrix. The advantage of the LS method lies
in using the asymptotic form of the wave function for the chain configuration to obtain the
transmission coefficients, whereas the TM technique would require multiple matrix products
of high degree. Moreover, the multi-channel LS approach can be easily extended to TB
systems with several orbitals per unit cell.

In section 2, the basic theory for obtaining thex4l scattering matrix (SM) for an H-
shaped configuration of atomic wires is presented by solving a multi-channel LS equation.
Section 3 is devoted to applications of the theory to various chain configurations derived
from the basic H shape. Concluding remarks are given in section 4. Units in Which —
are used throughout.

2. Basic theory

We consider the system, shown in figure 1, which consists of two infinite monatomic chains,
a andc, interacting with each other by either a direct bondr through a bridgeé, which
connects sites 0 in each chain. Being in constant potential, the chaansl ¢ can both
transmit the current. However, their site (bond) energies are, in general, diffefefte,

(B, # B.), corresponding to different types of atoms or orbitals, or indicating a possible
potential differencep = a. — a, between the two chains. As a result of the interaction,
the energies at sites 0 in both chains are perturbed by changintg o, (p = a,c).

The couplings with the neighbouring sites in both chaing, and 1, are perturbed in an
asymmetric manner, by changimy to y, andy, (p = a, ¢), respectively. This asymmetry
may describe a specific nature of the bonds involved in coupling the chains, but will also
be useful in tailoring different chain configurations in subsequent sections. The Iridge
consists of a finiteN-atom, chain with bond energ§,, while site energies;, are labelled

by the site positiom = 1,2, ..., N, to indicate the possibility of having an electric field
along the bridge generated by the potential differeptetween the chainsandc. Finally,

the bonds between the bridge end atoms 1 Andith the sites 0 in chaing andc¢ are u,

and u., respectively, as shown in figure 1.

The transmission properties of such an H-chain configuration are described, in general,
by a 4x 4 SM, whose elements will be derived by means of the LS equation. The scattering
wave function is represented in asymptotic regions of chairend ¢ by Bloch waves,
j,,_l/2 exp(ind,), carrying unit flux, wherg, = —28,, siné, is the current through the chain
p, while the momentum, is related to the energy, inside the band of the chap(= a, ¢),
via E = a), + 2B, cosh,. Using matrix notation, the wave functianis represented by

a
n
c
n
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Figure 1. Diagram of the basic H chain configuration, for which the scattering matrix elements
are evaluated. It is convenient to use teducedquantities: energ, = (E — «,)/28, (for

p = a, b, c), site-energy perturbatiof, = (a; —a,)/2B, and intra-chain bond perturbations
Yy = vp/Bps Y[’7 = y,;/,s,, (for p = a,c), as well as inter-chain bondg, = w.//BaPs,

Ve = Mc/«/m andW = T)/«/m-

where association of the subscriptwith the superscripty in the channel function:?
unambiguously restricts to be a site in the chaip = a, b, c. Thus, if the unperturbed
wave function represents a Bloch wave, which carries unit current incoming from the left
in the chaina,

¢Vl
0
0
then the scattering wave function will have the form
(eine,, _{_S[L;ue—iné)“) /\/Z
Ups—o0o = 0 (3)

Slt;cefinGC /\/I

@)

Ug =

in far left regions, and
Sie /s
0

Slarc'em@/\/z
in far right regions. Here, the elements of the SM have the following meanifjsis the
reflection coefficient for a Bloch wave incoming from the left in chaimnd is reflected
to the left in chaina, S{ is the transmission coefficient for a wave going from the left in
chaina to the right in chairu, S/ is the transmission coefficient for a wave coming from
the left in chaina to the left in chainc and S;'¢ is the transmission coefficient for a wave

4

Upnsoo =
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going from the left in chairz to the right in chairc. All other elements of the SM are, of
course, obtained by symmetry. In what follows, we are going to solve the LS equation for
the scattering wave function and use the asymptotic forms of the channel functiehs
andu to determine the relevant elements of the SM, in conjunction with (3) and (4).

The unperturbed Greenian describes two decoupled infinite chaiasd ¢, and an
isolatedN-atom chainb (a free bridge, possibly placed in an electric field), and is given by
the block matrix

8a(n, k) 0 0
Go = 0 gr(n, k) 0 (5)
0 0 8c(n, k)

where association of, k£ with p in g,(n, k) unambiguously restricts the sitesand k to
lie in the chainp (—oco < n,k < oo for p = a,cand 1< n,k < N for p = b). For
the reducedenergy X, = cosf, = (E — «,)/2f, inside the band<{1 < X, < 1) of the
chainp = a, ¢, the unperturbed Greenian, with the outgoing-wave asymptotic form, can be
expressed as [14]

éln—k\&,,

gp(n, k)= forp=a,c (6)

ijp

wherej, = —28,,/1— Xf,. The form of the free-bridge Greenigp(n, k) will be specified

in the following section, which is devoted to applications of the present theory.
Perturbations, describing the interacting system of the figure 1, can be arranged in the

3 x 3 block matrix

Vi ver o Ve Vim Hadk0dm1  Nk0dmo
V= Ve vk vige | = mabadmo 0 MbSkNBmo )
Vk(rizl chrﬁ VkL,;l 773k08m0 ,ubakOSmN chncq

where

Vi = (), — @p)8108m0 + (Vp — B) (8k08m.—1 + 8k.-18m0) + (¥ — Bp) (5108m1 + $t18m0),(8)
for p = a,c. Note that the explicit form of the perturbation matrix, (7) with (8), given
in terms of Kronecker deltas, is based on the convention Wjatdescribes a perturbation
involving sitek in chain p and sitem in chaing, wherep,q = a, b, c.

Finally, the multi-channel LS equation,

u = ug+ GoVu (9)

with the unperturbed solution (2), can be written in the following component form

no,
”Z = + (Ol,; —ag)ga(n, 0)”8 + (Va — Ba) [ga(na O)Mil + ga(n, _1)’48]

Via

+(v) = Ba) [8aln. O + ga(n, Dud] + paga(n, Oul + nga(n, 0us  (10)
Ul = pagy(n, Dug + pegy(n, N)ug (11)
U = (ol — ) ge(n, O+ (ve — Bo) [ge(n, Ous y + ge(n, —Lyug]

+(r, = Bo) [8e(n. Ous + ge(n, Du§] + pege(n, Ouly + nge(n, Oug.  (12)

After some algebra, it is possible to express the solution for the channel functions in chains
a andc in compact form, in terms ofg andug, as follows

gp(n7 O)
g[)(07 0)
+ vy — Bp) [gp(n. D) — gp(n, 0)€7 ]} ug (13)

u? = ! + (uf — vl +{p = By) [8p (1, —1) — g, (n, 0)€"]
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with p = a, ¢, where

ind,

Uy = —=+ 81,0 [n+ paprcgr(1, N) | ug (14)
\/J_a [ ] 0

U; = gc(n, 0) [77 + /LCMagb(Na 1)] M8~ (15)

Explicit forms of ug andug are readily obtained by solving the coupled equations

D l I\ A / D
uy = o {[2X, — (¥, + Y))EP v + (¥, — Dv”y + (¥, — Dol'} p=a,c  (16)
P

in conjunction with (14) and (15), where
D, = 2(Xy — Za) — [Y2 + (Y))?] €% — V73, (1. 1) (17)
D =2(X, — Zc) — [V + (Y))?] €% — Vg, (N, N). (18)

Here, we have used reduced quantiigs=v,/B,, ¥, = v,/Bp, Z, = (o, — @) /2B, and
V, = wp/\/BpBpr fOr p = a, c. Note that the Greenian of the bridges now expressed in
a reduced fornk, (n, m) = By,g,(n, m).

Takingn — o0 in (13) and comparing with (3) and (4) yields the SM elements

D.

Saa = —1—2i1/1—X3Ya2X (19)
: D,

S04 = —2i\/1— X2Y,Y,—= (20)
lr a a A

i Cca
Su = —2i[(1- xDA - x)]"* 1.7, A

(21)

Si being obtained from (21) simply by replaciig by Y. Here,A = D,;D. — C4:Ccq,
with

Cac =W+ Va chb(la N)

Caa=WH+YV, Vagb(Nv 1 (22)

where we definéV = n/+/B.B.. It should be noted that, in the definitions (17) and (18) of
D, and D., one has to specify analytic continuation of the factdts @utside the band of
chainp = a, ¢, namely

i — X2
o _ Xp+i /1-X7 for |X,| <1 23)

X, —sign(X,),/X2 -1 for |X,| > 1.

Equations (19) to (21), together with the definitions (17), (18), (22) and (23), constitute
the main results of the present theory. Transmission probabilities are obtained as squared
moduli of the corresponding SM elements (19) to (21), with the final remarksSfaand
Si¢ are nonzero foitX,| < 1, while ;i and S; are nonzero foitX,| < 1 and |X.| < 1,
that is, for energie€ inside the band overlap region of the chainandc.

3. Applications

In this section, we study the transmission properties of specific chain configurations, which

can be tailored from the basic H configuration of figure 1 by using convenient choices for the

various coupling parameters. Note that the reduced quantities are listed, for convenience,
in the caption of figure 1.
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3.1. Directly coupled infinite chains

We consider here the transmission properties of two identical chains, which are coupled by
the bondW, connecting the chains’ sites 0. The bridge is removed by taking V. = 0,

and we takeX, =X, =X, Y, =Y, =Y., =Y, =05andZ, = Z. = 0. We have plotted

in figure 2 theX and W dependences of the chainreflection probability (a), chaia-
transmission probability (b) and chaintransmission probabilities (c). Of course, the plots
add up to unity over the wholex, W) region.

3.2. Loop

Another configuration, of some interest for a memory cell [4], i ARt 1)-atom loop [10]

of a chain, which can be generated by taking the brigd@econstant potential and assuming
that it is made of same material as chaiffo; = o, forn =1,..., N andg, = 8,). The
loop is formed by takingt, =Y/ =0,Z. =0, V. =1landW =Y, =Y, =V, =Y.
Transmission probability through the loop is obtained fricf |2 and is nonzero for energies
X, = X inside the band of chaia (|X| < 1). Then, the elements of the bridge Greenian,
required inS;*, can expressed in terms of Chebyshev polynoniiglgX), as follows

gL 1D =g (N, N) =Uy_1(X)/Un(X)
g (1, N) =g,(N,1) = 1/Un(X). (24)
The X and Y dependence of the loop transmission probability is plotted in figure 3 for

N +1=5andZ, = 0. An interesting feature is the exact vanishing of the transmission
probability at the band centre, due to existence of a local antiresonance [10].

3.3. T-junction in constant potential

A T-junction with three semi-infinite leads [11] is obtained simply by taking= V. =
Y. =0andY, =1, Z. = 0. We shall assume that the chairis not perturbedX, = X,
Y, =Y =1 andZ, = 0) and that the remaining half of the chatnhas«, = «, and
B. = RB,, so that,X. = X/R. The X and W dependence of transmission probability
through the chaim is plotted in figure 4(a) folR = 0.5.

The case of one lead being a finite [10)-atom chain, is generated by taking
W =V, = 0. We have, in fact, the bridgk adsorbed on the site 0 of the chain(which
we take as unperturbe&, = X, ¥, =Y, = 1, Z, = 0) via the bondV, = V. In the
transmission probability. ,“;’|2, we need the bridge Greenian elemgptl, 1), analytically
continued outside the bridge band,

—Ug ‘E;X;’) for | X, < 1
&L 1) = NS Ginhl v x (25)
Sign(X,) — [NVarccost] X, D] for |X,| > 1.

sinh[(N + 1) arccosh(| X )]
Taking o, = a, and g, = RpB,, that is, X, = X/R, we plot theX and V dependence
of transmission probability in figure 4(b) fav = 4 and R = 0.5. The effect of the
adsorbedV-atom branch on the host chain is seen to introdNcé=4 for R < 1) dips in
the transmission probability, as the adsorption bdhthcreases.

3.4. T-junction in electric field

A T-junction with one, semi-infinite, lead in an electric field is obtained by taking
W = V. = 0, and placing the semi-infinite bridge in an electric field of gradiéniso



10755

Transmission properties of coupled atomic wires

] W o

i

=} Mgty
= AR, —
i
: Vol
vy, o M —
AR AL A W\M —

7
i 7

.......h....... \\\\\\\\\

Iy
i,
M A \
R 277 —
Wity teytony, 27 N
g 7 ) N
i A AV E AR
i =\ AR
T DR O Y
I aax NN
it A SRR
A AR !
iy 22N i
[ty e NN
i NN\ I
[ty 77N Ing,
[l 8 NN\ I iy
il N g e
i N b3 R
il A N
gy N 75227 AP
A\ N L7
N WOy 20y, 0y ey
I Ay 277 AR
T T T T L2752 LTHIONIL
R R e e i
NN~ LAY
Y~ AL A
Y 4270
NN g 0 ey hy iy iy
) LA
it
iyt

Q2
2L
17557
AL
L2 I
Sz
Ny
gy

{r
pty

| SEe?

Figure 2. Dependence of the transmission through two identical chains on eXeend inter-

-transmission probability (b) and

chain couplingW: chainea reflection probability (a), chain

chainc transmission probabilities (c).

is given by

needed SfY'

thate = ol + (n — 1T for 1 < n < co. The bridge Greenian,

[15]

(26)

)

J_e (1FI71
J_e—1 (1F517Y)

(1, 1) = sign(Fp)

8
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Figure 3. Dependence of the transmission probability through a chain with 1 = 5-atom
loop on energyX and bondsY of the crossing site.

where J is the Bessel function of the first kindg, = I'/28,, and & = X,/F, with

= (E — ab)/Zﬂb Taking again the chain to be unperturbedX, = X, ¥, =Y, =1
and Z, = 0), we defineF = I'/28, = RF,, whereR = B,/B8.,. Moreover, assuming
o} = a,, we haveX, = X/R. The dependence of the transmission probability through the
chaina on X andV =V, is plotted in figure 5(a) for = 0.15 andR = 0.5. Again, dips
in the transmission probability of the host chain reflect the local (discrete) density of states
at the site 1 of the lead in the field [15]. Figure 5(b) presents just the cross-sections of the
plot in figure 5(a), forV = 0.5 andV = 1.5, which reveal more detailed features of the

transmission probability.

3.5. Sandwich in constant potential and electric field

A sandwich structure [16, 17] consists of a finidé;atom chain between two semi-infinite
leads of same material, and is obtained by taking= Y, =Y. = 0, aswellag, =Y/ =1,

Z, = Z. = 0. When the bridge is placed in a constant potential and coupled to the leads by
V, = V.=V, its Greenian element§, (1, 1) = g,(N, N) are both given by the definition
(25). Similarly, the cross elemengg (1, N) = g,(N, 1), required inS;, are given by

1
for | X, <1
S (LN = Un(Xp) 7)
8b 9 - Xg_ 1

. N
[sign(X.,)] sinh[(N + 1) arccosh(| X, )] for [Xp] > 1.

Assumingo, = o, = a. and B, = B. = B,/R, we haveX, = X, = X and X, = X/R.
The X andV dependence of the transmission probability through the sandwich in a constant
potential,|S¢<|?, is plotted in figure 6(a) foV = 4 andR = 0.5. Thus, we have av-atom
impurity, immersed in a host chain, which shows up in the transmission probability as series
of resonance peaks, for sufficiently weak adsorption bgnd

A sandwich in an electric field is represented by two semi-infinite leads (obtained by
W=Y =Y. =0aswellas, =Y/ =1,Z, = Z. = 0), placed in constant, but different,
potentials, with potential differenceé. Assuming thate, = &) = o, + ¢ = o} + ¢,
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Figure 4. Transmission probability through a T-junction in constant potential, with the ratio of
band widthsR = 0.5, versus energx and bondsW or V for: three semi-infinite leads (a), and
one lead beingv = 4-atom branch adsorbed on the chaifb).

we have the field gradient across tiveatom bridgel’ = ¢/(N — 1). Assuming further
that 8, = B., we haveX, = X, — 2U, whereU = ¢ /4B, is the reduced potential
difference between the leads, so that the transmission probalsfity> is non-zero for
non-vanishing band-overlap between the leads, defined 4yl0 < 1. Defining the field
strength byF = T'/28, = 2U/(N — 1), we haveF, = F/R, whereR = 8,/8,. Referring

to X, = (E — o})/2B, = X,/R as the reduced energy at the site 1 of the bridge and
X, =(E —a))/2B, = X, — (N — 1) F,, as the reduced energy at the sieof the bridge,

we defineé = X,/F, = X,/F and¢’ = X, /F, = € — N 4+ 1. The relevant Greenian
elements may now be written as [17]

~ Y eJ gp1—J Y g

Bl = - (28)
Yoead g1 —J eV e

~ YerJey1 — Je'Y,

Bo(N.N) = o= (29)

Yo 1Jer — JoaVepn
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Figure 5. Transmission probability through a T-junction, with one lead in electric field 0.15
and the ratio of band width® = 0.5, versus energ and bondV (a). Fine structure of the
transmission is shown fov¥ = 0.5 andV = 1.5 (b).

2F

~ ~ R
(1, N) =2,(N,1) = T 30
8b 8b Yoo 1) st —Je1¥ e (30)

where the Bessel functions of the first (second) kihY') depend on AF,. Transmission
probability through the sandwich in the electric field is plotted in figure 6(b) for U=0.5 (the
overlapping region of the chai-band is then < X, < 1), andN = 10 andR = 0.5, as

a function of the coupling to the leadg, = V,, = V. The transmission probability shows

a number of resonant peaks, reflecting a portion of a quasi-Wannier-Stark ladder [15, 17],

formed in the bridge.
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in the field, generated by thé = 0.5 potential difference between the leads (b).

4. Concluding remarks

The theory of section 2 provides simple analytical expressions for the SM elements of
the basic H structure of figure 1 in terms of the bridge Greenian elements and a number
of perturbed site and bond energies. These results may prove useful for quick qualitative
estimates of transmission properties of a number of chain configurations, as described in
section 3. Special attention has been given to the cases with a bridge in an electric field,
for which the relevant Greenian elements can expressed in an analytical manner in terms
of Bessel functions. In this way we provide an analytical tool for studying basic elements
of atomic-wire circuits. For example, takingg = 0 in the H configuration of figure 1,
provides a model for a prototype atomic relay [4] by placing the feeddiimea potential,
so that the field across the bridgemay be used to control the transmission through the
chaina by displacing the atom at the site 0, thus weakening the bonds to its neighbours at
sites—1 and 1. Finally, let us mention that one can analyse the switching times, related to
the various transmission channels in the H structure by a straightforward extension of our
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study of switching time in a TB chain with a single impurity [18].
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